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1. Introduction

In an earlier paper [10], a construction was described which produced fam-
ilies of 4-dimensional hyper-Kéhler manifolds (one tamily for each finite sub-
group of SU(2)), the members of which were asymptotically locally Euclidean
(ALE). Our purpose here is to demonstrate the completeness of this construc-
tion: we shall show that every ALE hyper-Kéhler 4-manifold is isometric to
a member of one of the families obtained in [10].

For us, a Riemannian 4-manifold is ALE. if it has just one end and if
some neighborhood of infinity has a finite covering space 1% diffeomorphic to
the complement of the unit ball in R4; the Riemannian metric g9 on V is
required asymptotically to approximate the Euclidean metric 6% on R4, so
that in the natural coordinates z; one has

g9 = 69 4 a¥

with 9P¢¥ = O(r=47P), p > 0, where > = 3_z? and 0 denotes differen-
tiation with respect to the coordinates z,. We recall that a hyper-Kéahler
manifold carries three complex structures I,J, K and that these give three
(closed) Kéhler 2-forms wy,ws,ws. With this notation, the main result of
[10] is the following. Let I' be a finite subgroup of SU(2) and let X be the
smooth 4-manifold underlying the minimal resolution of the complex quotient
singularity C?/T.

Theorem 1.1. Let three cohomology classes oy, az,a3 € H*(X;R) be
gtven which satisfy the nondegeneracy condition

(%) for each £ € Hy(X;Z) with £ - ¥ = -2 there ezists
1€ {1,2,3} with o;(L) # 0.
Then there exists on X an ALE hyper-Kdhler structure for which the coho-
mology classes of the Kdhler forms [w;] are the given o.
The results of this paper were announced in [10]. They comprise the fol-
lowing two theorems, which will be proved in §§2 and 3, respectively.
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Theorem 1.2. FEuvery ALE hyper-Kdhler 4-manifold 1is diffeomorphic to
the minimal resolution of C%/T' for some I' C SU(2), and the cohomology
classes of the Kahler forms on such a manifold must satisfy condition (%).

Theorem 1.3, If X! and X? are two ALE hyper-Kdihler 4-manifolds and
if there is a diffeomorphism X' — X? under which the cohomology classes of
the Kdhler forms agree, then X' and X? are isometric by an isometry which
respects I,J, and K.

The author owes several ideas in the proofs of these results to conversations
with N. J. Hitchin. Theorem 1.2 was essentially known to him, while Theorem
1.3 generalilzes a conjecture made in [6], from which this work originated.
Following the description given there, we can give a more concrete version of
Theorem 1.3. If a basis Ty, - - - , T, for the lattice Hy(X; Z) is chosen, then for
each hyper-Kéahler structure, one can form the period matrix {2 whose entries
are obtained by evaluating the three Kéhler forms w; on the cycles ¥;:

Q,‘J‘ = / Wi
=,

3

What the theorem says is that the hyper-Kahler structure is determined once
the period matrix is known; this is the sense in which it relates to the classical
Torelli theorem for Riemann surfaces. A closer cousin is the corresponding
result for hyper-Kéhler metrics on the K3 surface; the most significant differ-
ence here is that, whereas the compactness of the K3 surface forces the three
cohomology classes [w;] to be orthogonal, the period matrix for an ALE space
is constrained only by the nondegeneracy condition (). Of course, (} is well
defined only to within an isometry of the homology lattice.

At many points in §2 our proof runs parallel to the proof given in [1] that
every finite-action, self-dual solution to the Yang-Mills equations on R* arises
from the monad construction of Atiyah, Drinfeld, Hitchin and Manin. Since a
hyper-Kahler 4-manifold is an (anti)-self-dual solution to Einstein’s equations,
the results of this paper constitute, perhaps, a gravitational analogue of the
ADHM classification.

2. The twistor space

Throughout this section, X will denote an arbitrary ALE hyper-Kéahler
4-manifold (we do not assume that X is one of the spaces constructed in [10])
and X will denote the topological one-point compactification X = X U {oo}.
Although it is not a manifold, the ALE condition allows us to give X the
structure of an orbifold (or V -manifold in Satake’s terminology [12]) as follows.
Let U’ be a neighborhood of infinity in X having a finite covering U’ with
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coordinates z; as in §1, and let U and U be obtained from these by adjoining
{oo}:
U=U'U{x}, U=0"U{oo}.

We will have U = U /T where T is the finite group of covering transformations.
Since U’ is Euclidean at infinity, the space Uisa topological manifold, and we
can make it a smooth manifold by declaring the coordinates y; = z; /1% to be
smooth. The Riemannian metric on U’ extends to U after a conformal change:
we put § = ¢2g where ¢: X — R™ is smooth and equal to 1/r2 outside some
compact set; then in the coordinates y; this metric has components

Gi; = 615 + O(lyl™)

and therefore extends to U as a metric of class C3 (there being similar decay
in the derivatives). The action of T on, U preserves the metric and is therefore
of class C%* for o < 1 (since harmonic coordinates are of this class).

Thus X is an orbifold (of class C*:®, though this is hardly important) with
a finite quotient singularity at co modelled on U /T; we may regard § as an
orbifold metric on X. _

The Riemann curvature tensor of a hyper-Kahler 4-manifold is anti-self-
dual with respect to the orientation associated with the complex structures.
This means that the metric is Ricci-flat and conformally anti-self-dual (that is,
the Weyl tensor is anti-self-dual [2]). Since this last condition is a conformally
invariant one, it is satisfied also by g, and one sees that X is a conformally
anti-self-dual orbifold.

In the coordinates y; on U , the extra point oo is at the origin, and by
means of its action on the tangent space at this point, we may identify T with
a subgroup of SO(4). Let U be given the orientation appropriate to the ori-
entation of X and let the %—spin bundles be labelled V* and V'~ accordingly.
We should remark that the hyper-Kéhler condition ensures that X is a spin
manifold and that VT is flat and globally trivial.

Lemma 2.1. The group T lies in the subgroup SU(2) C SO(4) which acts
trivially on V= and nontrivially on VT at the fized point.

Proof. To leading order, I" acts linearly on the coordinates z; and y; by one
and the same representation p: T' — SO(4). Since X is hyper-Kéhler, the %
spin bundle V+ is trivial on U’ and the trivialization is invariant under T. So
p(T) acts trivially on V' at the origin of the z coordinates. The y coordinates
differ from the z coordinates by an orientation-reversing diffeomorphism, so
that in the orientation appropriate to X, the group p(I') acts trivially on V'~
at the origin of the y coordinates.
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To study the spaces X and X we shall exploit Penrose’s nonlinear gravi-
tation construction. What we need can be found in [2] for the conformally
anti-self-dual case, and in [8] for the case of hyper-Kéhler manifolds.

Recall that when X is a conformally anti-self-dual 4-manifold with a spin
structure (as it is in our case), its twistor space may be defined as the pro-
jectivized -spin bundle Z = P(Vt). This Z carries an integrable complex
structure and an anti-holomorphic involution 7: Z — Z which depend only
on the conformal class of the metric. The fibers of the projection P(V+) — X
are the fwistor lines: they are holomorphic rational curves in Z which are pre-
served by 7. The dual of the tautological bundle on P(V 1) is a holomorphic
line bundle on Z whose sheaf of sections we denote by &(1).

The same constructions can be made when the conformally anti-self-dual
space is an orbifold rather than a manifold. For example, the twistor space of
U = U/T can be defined to be the complex orbifold W = W/T', where W is the
twistor space of U/. (Note that ' will act on W biholomorphically.) In this way
one may construct the twistor space Z of the compactification X = X U {oo}:
it is a complex orbifold containing a singular line /o lying over oo € X. If
lso C W denotes the nonsingular twistor line over co € U (a copy of CPI)
then we will have lo, = lo /T, and it follows from Lemma 2.1 that T acts on loo
by the standard action of SU(2) on CP!. The complex manifold Z = 7\l
is the twistor space of X, and the sheaf #(1) can be extended from Z to Z
by defining its local sections on W/F to be the I'-invariant local sections on
w.

To summarize, Z is the twistor space of the conformally anti-self-dual man-
ifold (X, g), and Z is the twistor space of the orbifold (X,g). The following
vanishing theorem is the key to the structure of these two complex spaces.

Lemma 2.2. HY(Z,7(-1)) =0.

Proof. Suppose not. Then by the Penrose transform (see {7]), we obtain
on X a nonzero solution ¥ to the orbifold Dirac equation D% = 0. (Here D
is the Dirac operator acting on sections of V. We remark that the Penrose
transform needs no modification for orbifolds.) By conformal invariance [7],
the spinor 1 gives rise to a nonzero solution of the Dirac equation on X
satisfying the decay conditions

lpl=0("%),  |V¥|=0("").
The Weitzenbock formula for the Dirac operator says that

D*D=V"V + 35,
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where S is the scalar curvature. Since § = 0 on X, we have V*V¢ = (. So,
following the usual Bochner vanishing argument, we find

o:/KR(v*vw,w) =/TSR|V¢|2+/T=R(V¢,¢)=/ V[ + O(R™9).

r<R

Letting R — oo one sees that V¢ = 0 and hence ¥ = 0, a contradiction.

The twistor space of a hyper-Kéhler 4-manifold possesses two additional
structures which are not present when the manifold is merely conformally
anti-self-dual. The first is a holomorphic fibration 7: Z — CP! of which the
twistor lines are sections. If one identifies CP! with S? ¢ R3, then for each
a = (a),az,a3) € S2, the fiber Z, = 7~1(a) is the complex surface obtained
by equipping Z with the complex structure

I, =a11+agJ + asK.

For each of these complex structures, there is a holomorphic symplectic form
on X (unique to within a complex scalar multiple) which is a linear combina-
tion of the three Kahler forms. (For the complex structure 7, the holomorphic
2-form is we + tw3.) Globally these fit together to give a holomorphic section
(8]
w€ HYZ, AT 20(2)),
where T is the tangent space to the fibers, the kernel of dw. This twisted
vertical 2-form is the second piece of additional data.
Let A(Z) denote the graded ring

A(Z)=PH"(Z2,6(k),
k>0
and let A(Z) and A(lo) be similarly defined. By Hartog’s theorem, sections
of @(k) on Z extend to Z, so that A(Z) = A(Z), and there is therefore a
restriction map A(Z) — A(le). Via the holomorphic fibration 7: Z — CP?,
we can pull back a basis u,v for H°(CP!,#(1)) to obtain two sections of
@(1) on Z, also denoted by u and v, which generate an ideal I C A(Z).
Proposition 2.3. The following sequence is exact:

"0—-1— A(Z)— A(le) — 0.

Proof. Let us first prove that the sequence is exact at the middle term. Let
F& C &@(k) be the subsheaf consisting of sections which vanish on lo,. What
we want to prove is that _% is generated by u and v, or that _% is the image
of

w@k—1) @@k —1) — &(k)
(8,t) — us +vt.
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Since « and v are nonvanishing on Z, we need only look at a neighborhood
of lo. For this purpose we may take the neighborhood W to be the twistor
space of U C X, so that W = W/I‘, where W is the twistor space of U. Then
v and v lift to sections @ and ¥ of & (k) on W, and we must show that they
generate the ideal sheaf of ioo.

This is a matter which depends only on the values of ¢ and ¢ and their first
derivatives at points of Io. It is therefore enough to look at the case X = R4,
for since # and o are determined by the metric alone, they will resemble the
flat case to fourth order near infinity. (To see how @ ard ¢ are related to the
metric, observe that in the hyper-Kahler manifold X they can be interpreted
as the two covariant-constant sections of (V' *)*. In this conformal model the
Christoffel symbols have order r—°, and so % and ¥ are Euclidean to order
r=%.) Now, in the R* case, X is conformally the 4-sphere, its twistor space
Z is CP®, and Z is CP%\ly. In suitable homogeneous coordinates [u, v, s, ],
the projection 7: Z — P, is given by

[u, v, 8, 8] — [u,v],

and [y, is the line defined by u = v = 0, which is what we wanted to prove.
So the sequence is exact at the middle term.

Now we must prove the surjectivity of the restriction map A(Z) — A(lx).
By the above arguments we have two short exact sequences of sheaves on Z:

(A) 0— £ — @ (k) — G (k) — 0,

B)0—Ck-2) DTk -1Dock-1)5 % —0,
where X: s — (vs, —us). To prove surjectivity we must show that H'(Z, %)
= 0. In fact we shall prove two assertions for all k£ > 0:

(Ue) H'(Z, %) =0,

() H'(Z,0(k)) = 0.
Since H%(Z, %) = 0 for k < 0, the long exact sequence in cohomology coming
from (B) gives

Dy = Pp_o, k<o

By Lemma 2.2 we already have ®_,, so ®; holds for all & < 0. Since the
canonical sheaf of the orbifold Z is @ (—4) (see [1]), Serre duality yields
H*(Z,0(k)) =0, k>-3.

(Serre duality for orbifolds is proved just as it is proved for complex manifolds:
one chooses a Hermitian metric and then exploits the Hodge theory. The
‘canonical sheaf’ is in the sense of orbifolds; see [3].) Using the long exact
sequence of (B) again, we deduce

Dp_1 = Uy, k> -1
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Now I is the quotient of a projective line by a finite group, so H' (I, @ (k)) =
0 for k > —1. The long exact sequence of (A) therefore yields

Uy = Py, k> —1.

Using the last two implications and induction, one sees that ®; and ¥y hold
for all k£ > 0. This proves the proposition.

The ring A(loo) is the I-invariant part of A(ls ), and since the latter is just
a polynomial ring in two variables (the affine coordinate ring of C?), it follows
that A(ly) is the affine coordinate ring of C2/T', the I'-invariant polynomials.
If Y is the affine variety whose coordinate ring is A(Z), then Proposition 2.3
can be interpreted as saying that there is a map ¢: ¥ — C? whose fiber
¢1(0) is C%/T. Since A(Z) is flat over Clu,v], this ® is a deformation of
C2/T. The grading of A(Z) gives an action of C* on Y, making ¢ a C*-
deformation in the sense of [13]: that is to say, ¢ is C*-equivariant, and the
fiber ¢~1(0) is equivariantly isomorphic to C2/T" with its obvious C*-action.

We can give a more concrete definition of Y. According to Klein [9], the
ring A(ls) is generated by three homogeneous elements z, y, z subject to one
relation f(z,y,2) = 0: '

Group Relation
Cr zy—2F=0
Dy z22+4+y%2+1 =0
T 224+ 93 4+24=0
0 2+ 3 +y2 =0
I 22493 4+22=0

Thus the exact sequence of Proposition 2.3 shows that A(z) is generated by
elements {z,y, z,u, v} subject to a relation

(2.4) f(@,y,2) +u-g(z,y,2,u,v) +v-h(z,y,2,u,v) =0

for some polynomials g and k. This equation defines a hypersurface Y C C3,
and the map ¢ = (u,v): Y — C2 is a deformation of C?/T'. If dy,ds,ds are
the degrees of z,y, 2, then the action of C* on C® given by

(2,9, 2,u,v) — (Ad‘x, A2y A3z A, Av)

leaves Y invariant and makes ¢ a C*-deformation.

The quotient of C3\0 by this action of C* is a certain compact variety,
a weighted projective space. Let Z° = (Y\0)/C* be the image of Y in this
weighted projective space, and define Z® = Z°\I2, where [, = {u =v =0} C
Z°. The functions z,Y, 2, u, v induce maps

X Z—2Z, x: Z—Z°.
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The map X takes a neighborhood of I, in Z isomorphically onto a neighbor-
hood of {5, in —Z_S, while the map x commutes with the projection to CP!:

z X%z
CP! = CP!

On each fiber Z, = 7r‘1(a), the restriction x,: Z, — Z: is proper and bira-
tional because X is an isomorphism near lo,. Furthermore, since each surface
Z, has zero first Chern class, there can be no exceptional curves of the first
kind in Z,, and it follows that x,: Z, — ZZ is the minimal resolution. We can
summarize the situation by saying that the diagram above is a simultaneous
resolution of 7°: Z% — CP! (see [5] for a definition) inducing the minimal
resolution of each fiber.

What we have seen is that the twistor space Z of an ALE hyper-Kihler
4-manifold has a singular model Z* which is obtained from the total space of
a deformation ¢: Y — C? by removing the fiber $~1(0) = C?/T" and then
dividing by a C*-action. (In the case in which I is cyclic, this is essentially
the description of the twistor space given by Hitchin [6], and was the starting
point for the twistor construction of the multi-Eguchi-Hanson gravitational
instantons.) This concrete description of Z, together with some results from
the deformation theory of C2/T', will lead easily to the proof of Theorem 1.2
and 1.3.

Being a deformation of C2/T', the map ¢ will be the pull-back of the semi-
universal deformation ¥: % — 7 by some map ¢: C? — 2

Y — ¥

29 q ]

Cz—t——‘*%

As in [10], we take for ¥ the C*-semi-universal deformation, so that all the
maps in this diagram are homogeneous and globally defined [13].

Corollary 2.6. X s diffeomorphic to C?//I‘, the minimal resolution of
C2/T.

Proof. 1t is a special property of the singularities C2/T" that their semi-
universal deformations admit simultaneous resolutions (5], [13]. From this
property it f(/)_l\l(/)WS that the minimal resolution of every fiber of ¥ is diffeo-
morphic to C2%/T'; and because of the diagram (2.5), the same is true for the
fibers of Y. But the latter are the spaces Z] whose minimal resolutions are the
surfaces Z,, and by the nature of the twistor space, each Z, is diffeomorphic
to X.
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The exceptional set in the minimal resolution C?7I‘ is a union of rational
curves, each with self-intersection —2, whose configuration is the dual of a
certain simply-laced Dynkin diagram A(T), one of A,, D, Eg, E; or Eg ac-
cording as I' is cyclic, binary bihedral, tetrahedral, octahedral or icosohedral
(see [13], for example). The second homology H2(X;Z) is therefore isomor-
phic to the corresponding root lattice in such a way that the classes ¥ with
T - ¥ = -2 correspond to the roots; and the cohomology H%(X;C) can be
identified with the complex Cartan algebra h°.

Lemma 2.7. There are only finitely many points a € CP! for which Z?
1s singular.

Proof. Notice first that for any given (—2)-class ¥ € Hy(X; Z), there is
at most one complex structure I, (a € S?) for which £ may be represented
by a holomorphic curve in X. To see this, suppose for example that X is
represented by a holomorphic curve P with respect to I. Then the Kéahler
form w; must be positive on P, while the form wq +%ws must be zero because
it is a holomorphic 2-form. Thus [w;](X) > 0, while [wo](Z) = [w3](Z) = 0,
and it is clear that the corresponding conditions cannot hold for any other
complex structure.

It follows that the number of points a € CP! for which Z; contains a holo-
morphic (—2)-curve does not exceed the number of roots. The singularities in
the fibers Z?2 all have the form C2/T" for some I' C SU(2) (this follows from
the corresponding property for the fibers of ¥; see {13]), and their minimal
resolutions- therefore contain (—2)-curves. So we deduce that the number of
points @ € CP! for which Z? is singular is also bounded by the number of
roots. This proves the lemma.

Being the twistor space of a hyper-Kéhler manifold, Z carries a holomorphic
section

w € HY(Z, ATy ® 7 (2)).
Taking the homology class of w on each fiber gives an element of HO(CP!, h°®
@ (2)), or alternatively a map p: C2 — h® which is homogeneous of degree 2.
Composing p with the projection A — h°/W gives a map

(2.8) p: C? — h°JW.

Now w also gives rise to a twisted vertical 2-form on the nonsingular part of
Z?® via the map x. From Z° we can lift it to Y where it gives a vertical 2-form
on the deformation ¢: Y — C2. So p is nothing other than the period map
for ¢ in the sense of [11].

Proof of Theorem 1.2, completed. It remains to show that the cohomology
classes of the Kédhler forms on X satisfy the nondegeneracy condition (*).
Suppose on the contrary that there is a ¥ on which all three cohomology
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classes vanish. Then the image of g lies in the kernel of a root, and the image
of the period map p lies in the branch locus of the quotient map ~° — h¢/W.
As is explained in [10], there is an isomorphism py: 27 — A¢/W (in fact,
the period map of the semi-universal deformation) with the property that
p = py ot, where ¢ is the map in (2.5). Furthermore, this py carries the
discriminant locus & C 7" onto the branch locus in A¢/W. It follows that
the image of ¢ lies in &'. But by the definition of the discriminant locus, this
means that all the fibers of ¢: ¥ — C? are singular, and this contradicts
Lemma 2.7.

3. Proof of Theorem 1.3

Let X! and X? be hyper-Kahler manifolds satisfying the hypotheses of
Theorem 1.3. We aim to prove that they are isometric, and our strategy is to
show that they have the same twistor space carrying the same real structure
7, the same family of twistor lines, and the same twisted 2-form. This will
suffice, for it is a feature of the Penrose construction that the twistor space,
together with these auxiliary structures, gives complete information about the
metric (see [8] for the hyper-Kéhler case}.

So let Z' and Z? be the twistor spaces and let the holomorphic fibrations
be

xt: Z' — CP! (1=1,2).
From the results of §2 we know that these are simultaneous resolutions of
certain singular models

(z°)': (2°)* = CP*  (i=1,2),
which in turn are quotients of two C*-deformations of C?/T,
Y —-C?* (1=1,2).
Since the cohomology classes of the three Kahler forms on X! and X? are
equal, the deformations ¢! and ¢? have the same period map (2.8) and are
therefore isomorphic by [10, Proposition (4.5)]. It follows that (x°)! and (7*)?
are isomorphic too, and that 7! and «? are simultaneous resolutions of one

and the same map which we shall now denote by 7%: Z5 — CP!. So the
picture is as follows:

7t X, g 72 X, gs
| | | |
cP' = cCP cpt = CP

Both maps x* extend to the compactification obtained by adding the line loo.
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Simultaneous resolutions of singular maps are not always unique and we
cannot deduce from these diagrams alone that Z! and Z?2 are isomorphic. We
could settle the question by appealing to the results of [4] to show that there
can only be one simultaneous resolution compatible with the known Kéahler
classes; but we shall not pursue this line, as the singular model contains all
the information we need.

Via the maps x°, the space Z° obtains two real structures 7! and 72, two
twisted vertical 2-forms w! and w? (at least on the complement of the singular
set), and two families of twistor lines # ! and # 2, each of which fibers Z° in
some neighborhood of infinity.

The composite 0 = 1! is a holomorphic transformation of Z° and
therefore produces an automorphism A(o) of the graded ring A(Z®). Since
o respects the holomorphic fibration over CP?, the automorphism A(c) fixes
u and ». Further, since 7! and 72 both give the antipodal map on I, the
automorphism of A(l) which ¢ induces is the identity. Applying the 5-lemma
to the short exact sequence of Proposition 2.3, we deduce that A(¢) =1 and
hence 7! = 72,

The ratio of w! and w? is a holomorphic function on the nonsingular part
of Z° which extends, by Hartog’s theorem, first to Z° itself and then to Z°.
Since Z° is compact, this ratio is constant, and since the cohomology classes
of w! and w? agree, the ratio must be 1. So w! = w?.

For i = 1,2, let U* be a neighborhood of {co} in X, let U? be its nonsingu-
lar branched covering, and let W* and W¢ be the twistor spaces of U/* and U”.
We may view W' and W?2 as neighborhoods of I, in the singular model 78,
and by shrinking them somewhat, we may take it that they coincide. Since
each W' restricts to give the universal covering of W*\l,, there will be a
diagram

o 12

1

WL W
AW v
w

in which v is an isomorphism.

Being the twistor space of U¢, each W' has a real structure 7%, and we
must show that v preserves these: that is, 71 = v~17%y. Now if these two
differ at all, then they differ by a covering transformation 4 € I, for we
already know that 7! and 7% are the same on W. Furthermore, since both
real structures give the antipodal map of l~°°, the covering transformation ~
must leave [ pointwise fixed. So the only possibility is I' = —1, this being
the only nontrivial element of SU(2) which acts trivially on CP!. To rule out
this last possibility we recall from [8] that the twisted vertical 2-form on a
twistor space must be compatible with the real structure in a strong sense,
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for it must give rise to a metric on X which is not only real but also posstive
definite. The point is that if the two real structures did differ by the action of
—1 € SU(2), then they would give rise to ‘metrics’ of opposite sign. (One can
check this explicitly in the flat case when Z = CP3.) These considerations .
show that v must preserve the real structures 7°.

The twistor lines of U'* form a smooth family #* in W* depending on four
real parameters (¢ = 1,2). The line I belongs to both families, and being a
twistor line, it has normal bundle &(1) @& (1). A theorem of Kodaira implies
that the universal deformation of [ in W is a smooth family of four complex
parameters (see [2]), and it follows that F consists of all those members of
the universal family which are preserved by 7. Since v carries Iso t0 loo and
preserves the real structures, it therefore follows that v carries the family 5!
to the family 2. Near lso, the twistor lines in Z° belonging to the families
F1and F? are Just the images of the families # ! and ¥ 2; so these coincide
also.

It now follows that in the hyper-Kéhler manifolds X' and X? there will be
open neighborhoods of infinity, say V! and V2, on which there is an isometry
n: V! — V2. If we choose an a € CP! for which Z¢ is nonsingular, then the
maps x* give isomorphisms on the fibers Z: = Z2 (i = 1,2); and since Z! and
Z? are just the manifolds X' and X? equipped with the complex structure
I,, we conclude that 7 extends to a global diffeomorphism 7,: X! — X2
which is holomorphic with respect to I,. Since this map is an isometry on the
open set V1, it is an isometry everywhere by analytic continuation and will
be holomorphic with respect to all the complex structures.
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